Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Aslı Kartal,^a Nazan Ocak Ískeleli,^b Çiğdem Albayrak,^c Erbil Ağar^c and Ahmet Erdönmez^a*

^aDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, TR-55139 Kurupelit-Samsun, Turkey, ^bDepartment of Science Education, Sinop Faculty of Education, Ondokuz Mayıs University, TR-57000 Sinop, Turkey, and ^cDepartment of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayıs University, TR-55139 Kurupelit-Samsun, Turkey

Correspondence e-mail: akartal@omu.edu.tr

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.002 Å R factor = 0.037 wR factor = 0.110 Data-to-parameter ratio = 17.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. The crystal structure of the title phthalonitrile derivative, $C_{15}H_8N_2O_2$, is stabilized by intermolecular $C-H\cdots O$ contacts.

4-(2-Formylphenoxy)phthalonitrile

Received 22 December 2005 Accepted 3 January 2006

Comment

Substituted phthalonitriles are generally used for preparing symmetrically and unsymmetrically peripherally and nonperipherally substituted phthalocyanines and subphthalocyanines (McKeown, 1998; Leznoff & Lever, 1989–1996). In addition to their extensive use as dyes and pigments, phthalocyanines have found widespread application in catalysis, optical recording, photoconductive materials and photodynamic therapy, and as chemical sensors (Leznoff & Lever, 1989–1996).

The molecule of the title compound, (I) is not planar: the dihedral angle between the phthalonitrile moiety and the 2-formylphenoxy group is $62.68 (4)^{\circ}$. The lengths of the two N=C triple bonds [C1=N1 = 1.3333 (17) Å and C2=N2 = 1.1409 (17) Å] are consistent with those found in similar compounds (Ocak *et al.*, 2003, 2004; Atalay *et al.*, 2003; Erdem *et al.*, 2004).

The crystal structure of (I) is stabilized by $C-H\cdots O$ intermolecular contacts (Table 1, Fig. 2).

Experimental

To a solution of salicylaldehyde (1.4 g, 1,3 ml, 11.47 mmol) in dimethylformamide (DMF, 20 ml) was added potassium carbonate (3.16 g, 22.95 mmol). The mixture was stirred for 30 min under N₂. 4-Nitrophtalonitrile (1.98 g, 11.47 mmol) solution in DMF (30 ml) was added. The mixture was stirred for 48 h at 323 K under N₂ and poured into ice–water (150 g). The product was filtered off and washed with water and then recrystallized from ethanol to obtain 4-(2-formylphenoxy)phthalonitrile as a colourless solid. Crystals of (I) suitable for X-ray analysis were obtained from ethanol at room temparature *via* slow evaporation (yield 83%, m.p. 427 K).

© 2006 International Union of Crystallography All rights reserved

Figure 1

A drawing of (I), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

reflections

Crystal data

C15H8N2O2 $D_x = 1.322 \text{ Mg m}^{-3}$ $M_r = 248.23$ Mo $K\alpha$ radiation Monoclinic, C2/c Cell parameters from 13844 a = 23.0524 (16) Å $\theta = 2.1 - 28.0^{\circ}$ b = 8.1639 (8) Å $\mu = 0.09~\mathrm{mm}^{-1}$ c = 15.3994 (11) Å T = 293 (2) K $\beta = 120.621 \ (5)^{\circ}$ V = 2494.0 (4) Å³ Prism, colourless $0.42 \times 0.34 \times 0.23 \text{ mm}$ Z = 8

Data collection

Stoe IPDS-2 diffractometer 1934 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.036$ ω scans Absorption correction: integration $\theta_{\rm max} = 27.9^{\circ}$ (X-RED32; Stoe & Cie, 2002) $h = -30 \rightarrow 28$ $k = -10 \rightarrow 10$ $T_{\min} = 0.970, T_{\max} = 0.982$ 16362 measured reflections $l = -20 \rightarrow 20$ 2982 independent reflections

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.061P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.037$	+ 0.0525P]
$wR(F^2) = 0.110$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.04	$(\Delta/\sigma)_{\rm max} < 0.001$
2982 reflections	$\Delta \rho_{\rm max} = 0.14 \text{ e } \text{\AA}^{-3}$
173 parameters	$\Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	Extinction correction: SHELXL97
	(Sheldrick, 1997)
	Extinction coefficient: 0.0113 (15)

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C8-H8···O2 ⁱ	0.93	2.39	3.2722 (15)	159
$C11-H11\cdots O2^{ii}$	0.93	2.42	3.3199 (17)	164

Symmetry codes: (i) $-x + \frac{1}{2}$, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) $x, -y + 1, z - \frac{1}{2}$.

Figure 2

A partial packing diagram for (I), showing the C-H···O hydrogenbonding interactions as dashed lines. [Symmetry codes: (i) $\frac{1}{2} - x$, $y - \frac{1}{2}, \frac{1}{2} - x$ z; (ii) x, 1 - y, $z - \frac{1}{2}$].

H atoms were included in calculated positions and treated using a riding model, with C-H(aromatic) = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999).

References

- Atalay, Ş., Ağar, A., Akdemir, N. & Ağar, E. (2003). Acta Cryst. E59, o1111-01112
- Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
- Erdem, T. K., Atalay, Ş., Akdemir, N., Ağar, E. & Kantar, C. (2004). Acta Cryst. E60, o1849-o1850.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Leznoff, C. C. & Lever, A. B. P. (1989-1996). Phthalocyanines: Properties and Applications, Vols 1, 2, 3 and 4. Weinheim, New York: VCH Publishers Inc.
- McKeown, N. B. (1998). Phthalocyanine Materials: Synthesis, Structure and Function. Cambridge University Press.
- Ocak, N., Ağar, A., Akdemir, N., Ağar, E., García-Granda, S. & Erdönmez, A. (2003). Acta Cryst. E59, o1000-o1001.
- Ocak, N., Çoruh, U., Akdemir, N., Kantar, C., Ağar, E. & Erdönmez, A. (2004). Acta Cryst. E60, o33-o34.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Stoe & Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe & Cie, Darmstadt, Germany.