Structure Reports

Online
ISSN 1600-5368

Aslı Kartal, ${ }^{\text {a }}$ Nazan Ocak Ískeleli, ${ }^{\text {b }}$ Ciğdem Albayrak, ${ }^{\text {c }}$ Erbil Ağar ${ }^{\text {c }}$ and Ahmet Erdönmez ${ }^{\text {a }}$ *

${ }^{\text {a }}$ Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, TR-55139 Kurupelit-Samsun, Turkey, ${ }^{\text {b }}$ Department of Science Education, Sinop Faculty of Education, Ondokuz Mayıs University, TR-57000 Sinop, Turkey, and ${ }^{\text {c }}$ Department of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayıs University, TR-55139 Kurupelit-Samsun, Turkey

Correspondence e-mail: akartal@omu.edu.tr

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.037$
$w R$ factor $=0.110$
Data-to-parameter ratio $=17.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
4-(2-Formylphenoxy)phthalonitrile

The crystal structure of the title phthalonitrile derivative, $\mathrm{C}_{15} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2}$, is stabilized by intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ contacts.

Comment

Substituted phthalonitriles are generally used for preparing symmetrically and unsymmetrically peripherally and nonperipherally substituted phthalocyanines and subphthalocyanines (McKeown, 1998; Leznoff \& Lever, 1989-1996). In addition to their extensive use as dyes and pigments, phthalocyanines have found widespread application in catalysis, optical recording, photoconductive materials and photodynamic therapy, and as chemical sensors (Leznoff \& Lever, 1989-1996).

(I)

The molecule of the title compound, (I) is not planar: the dihedral angle between the phthalonitrile moiety and the 2formylphenoxy group is $62.68(4)^{\circ}$. The lengths of the two $\mathrm{N} \equiv \mathrm{C}$ triple bonds $[\mathrm{C} 1 \equiv \mathrm{~N} 1=1.3333$ (17) \AA and $\mathrm{C} 2 \equiv \mathrm{~N} 2=$ 1.1409 (17) \AA] are consistent with those found in similar compounds (Ocak et al., 2003, 2004; Atalay et al., 2003; Erdem et al., 2004).
The crystal structure of (I) is stabilized by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ intermolecular contacts (Table 1, Fig. 2).

Experimental

To a solution of salicylaldehyde ($1.4 \mathrm{~g}, 1,3 \mathrm{ml}, 11.47 \mathrm{mmol}$) in dimethylformamide (DMF, 20 ml) was added potassium carbonate $(3.16 \mathrm{~g}, 22.95 \mathrm{mmol})$. The mixture was stirred for 30 min under $\mathrm{N}_{2} .4$ Nitrophtalonitrile ($1.98 \mathrm{~g}, 11.47 \mathrm{mmol}$) solution in DMF (30 ml) was added. The mixture was stirred for 48 h at 323 K under N_{2} and poured into ice-water (150 g). The product was filtered off and washed with water and then recrystallized from ethanol to obtain 4-(2-formylphenoxy)phthalonitrile as a colourless solid. Crystals of (I) suitable for X-ray analysis were obtained from ethanol at room temparature via slow evaporation (yield 83%, m.p. 427 K).

Received 22 December 2005

Figure 1
A drawing of (I), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2}$
$M_{r}=248.23$
Monoclinic, $C 2 / c$ c \AA
$a=23.0524(16) \AA$
$b=8.1639(8) \AA$
$c=15.3994(11) \AA$
$\beta=120.621(5)^{\circ} \AA^{\circ}$
$V=2494.0(4) \AA^{3}$
$Z=8$

$$
D_{x}=1.322 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 13844 reflections
$\theta=2.1-28.0^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, colourless
$0.42 \times 0.34 \times 0.23 \mathrm{~mm}$

Data collection

Stoe IPDS-2 diffractometer ω scans
Absorption correction: integration
(X-RED32; Stoe \& Cie, 2002)
$T_{\min }=0.970, T_{\max }=0.982$
16362 measured reflections
2982 independent reflections

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.061 P)^{2}\right. \\
& +0.0525 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\text {max }}=0.14 \mathrm{e}_{\AA^{-3}} \\
& \Delta \rho_{\min }=-0.16 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { (Sheldrick, 1997) } \\
& \text { Extinction coefficient: } 0.0113 \text { (15) }
\end{aligned}
$$

Table 1

Hydrogen-bond geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 8-\mathrm{H} 8 \cdots \mathrm{O}^{2}$	0.93	2.39	$3.2722(15)$	159
$\mathrm{C}^{\mathrm{i}} 1-\mathrm{H} 11 \cdots \mathrm{O}^{\mathrm{ii}}$	0.93	2.42	$3.3199(17)$	164

Symmetry codes: (i) $-x+\frac{1}{2}, y-\frac{1}{2},-z+\frac{1}{2}$; (ii) $x,-y+1, z-\frac{1}{2}$.

Figure 2
A partial packing diagram for (I), showing the $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogenbonding interactions as dashed lines. [Symmetry codes: (i) $\frac{1}{2}-x, y-\frac{1}{2}, \frac{1}{2}-$ z; (ii) $\left.x, 1-y, z-\frac{1}{2}\right]$.

H atoms were included in calculated positions and treated using a riding model, with $\mathrm{C}-\mathrm{H}($ aromatic $)=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: X - $A R E A$ (Stoe \& Cie, 2002); cell refinement: $X-A R E A$; data reduction: $X-R E D 32$ (Stoe \& Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett \& Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999).

References

Atalay, Ş., Ağar, A., Akdemir, N. \& Ağar, E. (2003). Acta Cryst. E59, o1111o1112.
Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Erdem, T. K., Atalay, Ş., Akdemir, N., Ağar, E. \& Kantar, C. (2004). Acta Cryst. E60, o1849-o1850.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Leznoff, C. C. \& Lever, A. B. P. (1989-1996). Phthalocyanines: Properties and Applications, Vols 1, 2, 3 and 4. Weinheim, New York: VCH Publishers Inc.
McKeown, N. B. (1998). Phthalocyanine Materials: Synthesis, Structure and Function. Cambridge University Press.
Ocak, N., Ağar, A., Akdemir, N., Ağar, E., García-Granda, S. \& Erdönmez, A. (2003). Acta Cryst. E59, o1000-o1001.

Ocak, N., Çoruh, U., Akdemir, N., Kantar, C., Ağar, E. \& Erdönmez, A. (2004). Acta Cryst. E60, o33-o34.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Stoe \& Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe \& Cie, Darmstadt, Germany.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

